Sunday , February 17 2019
Breaking News
Home / Studies / Comparative In Vitro Toxicity Profile of Electronic and Tobacco Cigarettes, Smokeless Tobacco and Nicotine Replacement Therapy Products: E-Liquids, Extracts and Collected Aerosols

Comparative In Vitro Toxicity Profile of Electronic and Tobacco Cigarettes, Smokeless Tobacco and Nicotine Replacement Therapy Products: E-Liquids, Extracts and Collected Aerosols | Lorillard Tobacco Company, A.W. Spears Research Center

Abstract: The use of electronic cigarettes (e-cigs) continues to increase worldwide in parallel with accumulating information on their potential toxicity and safety. In this study, an in vitro battery of established assays was used to examine the cytotoxicity, mutagenicity, genotoxicity and inflammatory responses of certain commercial e-cigs and compared to tobacco burning cigarettes, smokeless tobacco (SLT) products and a nicotine replacement therapy (NRT) product. The toxicity evaluation was performed on e-liquids and pad-collected aerosols of e-cigs, pad-collected smoke condensates of tobacco cigarettes and extracts of SLT and NRT products. In all assays, exposures with e-cig liquids and collected aerosols, at the doses tested, showed no significant activity when compared to tobacco burning cigarettes. Results for the e-cigs, with and without nicotine in two evaluated flavor variants, were very similar in all assays, indicating that the presence of nicotine and flavors, at the levels tested, did not induce any cytotoxic, genotoxic or inflammatory effects. The present findings indicate that neither the e-cig liquids and collected aerosols, nor the extracts of the SLT and NRT products produce any meaningful toxic effects in four widely-applied in vitro test systems, in which the conventional cigarette smoke preparations, at comparable exposures, are markedly cytotoxic and genotoxic.

Keywords: e-cigarette; snus; snuff; e-liquid; aerosol; cytotoxicity; mutagenicity; inflammation; condensate; in vitro

Manoj Misra *, Robert D. Leverette, Bethany T. Cooper, Melanee B. Bennett and Steven E. Brown
Lorillard Tobacco Company, A.W. Spears Research Center, 420 North English Street, Greensboro, North Carolina 27405, USA
* Author to whom correspondence should be addressed; Tel.: +1-336-335-6679; Fax: +1-336-335-6640.
External Editor: Konstantinos Farsalinos
Received: 1 August 2014; in revised form: 16 October 2014 / Accepted: 24 October 2014 / Published: 30 October 201

  1. Ayers, J.W.; Ribisl, K.M.; Brownstein, J.S. Tracking the rise in popularity of electronic nicotine delivery systems (electronic cigarettes) using search query surveillance. Am. J. Prev. Med. 2011, 40, 448–453. [Google Scholar] [CrossRef] [PubMed]
  2. Etter, J.-F.; Bullen, C.; Flouris, A.D.; Laugesen, M.; Eissenberg, T. Electronic nicotine delivery systems: A research agenda. Tob. Control. 2011, 20, 243–248. [Google Scholar] [CrossRef] [PubMed]
  3. Levitz, J.S.; Bradley, T.P.; Golden, A.L. Overview of smoking and all cancers. Med. Clin. North Am. 2004, 88, 1655–1675. [Google Scholar] [CrossRef] [PubMed]
  4. Polosa, R.; Rodu, B.; Caponnetto, P.; Maglia, M.; Raciti, C. A fresh look at tobacco harm reduction: The case for the electronic cigarette. Harm Reduct. J. 2013, 10. [Google Scholar] [CrossRef]
  5. Brown, B.; Beard, E.; Kotz, D.; Michie, S.; West, R. Real-world effectiveness of e-cigarettes when used to aid smoking cessation: A cross-sectional population study. 2014, 109, 1531–1540. [Google Scholar]
  6. Statement from Specialists in Nicotine Science and Public Health Policy. Available online: (accessed on 27 October 2014).
  7. Goniewicz, M.L.; Knysak, J.; Gawron, M.; Kosmider, L.; Sobczak, A.; Kurek, J.; Prokopowicz, A.; Jablonska-Czapla, M.; Rosik-Dulewska, C.; Havel, C.; et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 2013, 23, 1–7. [Google Scholar]
  8. Farsalinos, K.E.; Polosa, R. Safety evaluation and risk assessment of electronic cigarettes as tobacco cigarette substitutes: A systematic review. Ther. Adv. Drug Safety 2014, 5, 67–86. [Google Scholar] [CrossRef]
  9. Romagna, G.; Allifranchini, E.; Bocchietto, E.; Todeschi, S.; Esposito, M.; Farsalinos, K.E. Cytotoxicity evaluation of electronic cigarette vapor extract on cultured mammalian fibroblasts (clearstream-life): Comparison with tobacco cigarette smoke extract. Inhal. Toxicol. 2013, 25, 354–361. [Google Scholar] [CrossRef] [PubMed]
  10. Farsalinos, K.E.; Romagna, G.; Allifranchini, E.; Ripamonti, E.; Bocchietto, E.; Todeschi, S.; Tsiapras, D.; Kyrzopoulos, S.; Voudris, V. Comparison of the cytotoxic potential of cigarette smoke and electronic cigarette vapour extract on cultured myocardial cells. Int. J. Environ. Res. Public Health 2013, 10, 5146–5162. [Google Scholar] [CrossRef] [PubMed]
  11. Nutt, D.J.; Phillips, L.D.; Balfour, D.; Curran, V.; Dockrell, M.; Foulds, J.; Fagerstrom, K.; Letlape, K.; Milton, A.; Polosa, R.; et al. Estimating the harms of nicotine-containing products using the MCDA approach. Eur. Addict. Res. 2014, 20, 218–225. [Google Scholar] [CrossRef] [PubMed]
  12. Arimilli, S.; Damratoski, B.E.; Bombick, B.; Borgerding, M.F.; Prasad, G.L. Evaluation of cytotoxicity of different tobacco product preparations. Regul. Toxicol. Pharmacol. 2012, 64, 350–360. [Google Scholar] [CrossRef] [PubMed]
  13. The Rationale and Strategy for Conducting In Vitro Toxicology Testing of Tobacco Smoke. Available online: (accessed on 27 October 2014).
  14. Determination of “Tar,” Nicotine and Carbon Monoxide in Mainstream Tobacco Smoke-Official Method. Available online: (accessed on 8 January 2006).
  15. Rickert, W.S.; Wright, W.G.; Trivedi, A.H.; Momin, R.A.; Lauterbach, J.H. A comparative study of the mutagenicity of various types of tobacco products. Regul. Toxicol. Pharmacol. 2007, 48, 320–330. [Google Scholar] [CrossRef] [PubMed]
  16. Official Method T-115. Determination of “Tar”, Nicotine and Carbon Monoxide in Mainstream Tobacco Smoke. Available online: (accessed on 29 October 2014).
  17. Borenfreund, E.; Puerner, J.A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Letters 1985, 24, 119–124. [Google Scholar] [CrossRef]
  18. Bombick, D.W.; Doolittle, D.J. The role of chemical structure and cell type in the cytotoxicity of low molecular weight aldehydes and pyridines. In Vitro Toxicol. 1995, 8, 349–356. [Google Scholar]
  19. Human IL-8 ELISA Kit. For the Quantitative Determination of Human IL-8 Concentrations in Serum, Plasma, Cell Culture Supernatant and Other Biological Fluids. Available online: (accessed on 20 October 2014).
  20. Aufderheide, M.; Gressmann, H. A modified ames assay reveals the mutagenicity of native cigarette mainstream smoke and its gas vapour phase. Exp. Toxicol. Pathol. 2007, 58, 383–392. [Google Scholar] [CrossRef] [PubMed]
  21. Maron, D.M.; Ames, B.N. Revised methods for the salmonella mutagenicity test. Mutat. Res. 1983, 113, 173–215. [Google Scholar] [CrossRef] [PubMed]
  22. Diaz, D.; Scott, A.; Carmichael, P.; Shi, W.; Costales, C. Evaluation of an automated in vitro micronucleus assay in CHO-K1 cells. Mutat. Res. 2007, 630, 1–13. [Google Scholar] [CrossRef] [PubMed]
  23. Kirkland, D.; Reeve, L.; Gatehouse, D.; Vanparys, P. A core in vitro genotoxicity battery comprising the AMES test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat. Res. 2011, 721, 27–73. [Google Scholar] [CrossRef] [PubMed]
  24. Aggarwal, B.B.; Shishodia, S.; Sandur, S.K.; Pandey, M.K.; Sethi, G. Inflammation and cancer: How hot is the link? Biochem. Pharmacol. 2006, 72, 1605–1621. [Google Scholar]
  25. Balkwill, F.; Charles, K.A.; Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005, 7, 211–217. [Google Scholar] [CrossRef] [PubMed]
  26. Bahl, V.; Lin, S.; Xu, N.; Davis, B.; Wang, Y.H.; Talbot, P. Comparison of electronic cigarette refill fluid cytotoxicity using embryonic and adult models. Reprod. Toxicol. 2012, 34, 529–537. [Google Scholar] [CrossRef] [PubMed]
  27. Balharry, D.; Sexton, K.; BeruBe, K.A. An in vitro approach to assess the toxicity of inhaled tobacco smoke components: Nicotine, cadmium, formaldehyde and urethane. Toxicology 2008, 244, 66–76. [Google Scholar] [CrossRef] [PubMed]
  28. Scott, K.; Saul, J.; Crooks, I.; Camacho, O.M.; Dillon, D.; Meredith, C. The resolving power of in vitro genotoxicity assays for cigarette smoke particulate matter. Toxicol. in Vitro 2013, 27, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
  29. Rosefort, C.; Fauth, E.; Zankl, H. Micronuclei induced by aneugens and clastogens in mononucleate and binucleate cells using cytokinesis block assay. Mutagenesis 2004, 19, 277–284. [Google Scholar] [CrossRef] [PubMed]
  30. Fuke, S.; Betsuyaku, T.; Nasuhara, Y.; Morikawa, T.; Katoh, H.; Nishimura, M. Chemokines in bronchiolar epithelium in the development of chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2004, 31, 405–412. [Google Scholar] [CrossRef] [PubMed]
  31. Moretto, N.; Facchinetti, F.; Southworth, T.; Civelli, M.; Singh, D.; Patacchini, R. α,β-Unsaturated aldehydes contained in cigarette smoke elicit IL-8 release in pulmonary cells through mitogen-activated protein kinases. Am. J. Physiol. Lung Cell Mol. Physiol. 2009, 296, L839–L848. [Google Scholar] [CrossRef] [PubMed]
  32. Baker, R.R.; Massey, E.D.; Smith, G. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem. Toxicol. 2004, 42, S53–S83. [Google Scholar] [CrossRef] [PubMed]
  33. Misra, M.; Leverette, R.D.; Hamm, J.T.; Vulimiri, S.V. In vitro toxicological evaluation of cigarette smoke particulate matter: Effect of Dimethyl Sulfoxide (DMSO) as solvent. Beiträge zur Tabakforschung International 2010, 24, 2–9. [Google Scholar]
  34. Jianhua, Y.; Gao, Q.; Mi, Q.; Li, X.; Miao, M.; Cheng, P.; Luo, Y. In vitro micronucleus assay for the analysis of total particulate matter in cigarette smoke: Comparison of flow cytometry and laser scanning cytometry with microscopy. Mutat. Res. 2013, 755, 120–125. [Google Scholar] [CrossRef] [PubMed]
  35. Rickert, W.S.; Trivedi, A.H.; Momin, R.A.; Wright, W.G.; Lauterbach, J.H. Effect of smoking conditions and methods of collection on the mutagenicity and cytotoxicity of cigarette mainstream smoke. Toxicol. Sci. 2007, 96, 285–293. [Google Scholar] [CrossRef] [PubMed]
  36. Fields, W.R.; Leonard, R.M.; Odom, P.S.; Nordskog, B.K.; Ogden, M.W.; Doolittle, D.J. Gene expression in Normal Human Bronchial Epithelial (NHBE) cells following in vitro exposure to cigarette smoke condensate. Toxicol. Sci. 2005, 86, 84–91. [Google Scholar] [CrossRef] [PubMed]
  37. Pryor, W.A.; Stone, K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann. N. Y. Acad. Sci. 1993, 686, 12–28. [Google Scholar] [CrossRef] [PubMed]
  38. Kalra, R.; Singh, S.P.; Pena-Philippides, J.C.; Langley, R.J.; Razani-Boroujerdi, S.; Sopori, M.L. Immunosuppressive and anti-inflammatory effects of nicotine administered by patch in an animal model. Clin. Vaccine Immunol. 2004, 11, 563–568. [Google Scholar] [CrossRef]
  39. Tayyarah, R.; Long, G.A. Comparison of select analytes in aerosol from e-cigarettes with smoke from conventional cigarettes and with ambient air. Reg. Toxicol. Pharmacol. 2014, 2014. [Google Scholar] [CrossRef]
  40. Finch, G.L.; Nikula, K.J.; Chen, B.T.; Barr, E.B.; Chang, I.Y.; Hobbs, C.H. Effect of chronic cigarette smoke exposure on lung clearance of tracer particles inhaled by rats. Fundam. Appl. Toxicol. 1995, 24, 76–85. [Google Scholar] [CrossRef] [PubMed]
  41. Rodu, B. The scientific foundation for tobacco harm reduction, 2006–2011. Harm Reduct. J. 2011, 8. [Google Scholar] [CrossRef] [PubMed]
  42. McNeill, A.; Munafò, M.R. Reducing harm from tobacco use. J. Psychopharmacol. 2012, 2012. [Google Scholar] [CrossRef]
  43. Fagerström, K.O.; Bridgmanb, K. Tobacco harm reduction: The need for new products that can compete with cigarettes. Addict. Behav. 2014, 39, 507–511. [Google Scholar] [CrossRef] [PubMed]
  44. Gartner, C.E.; Hall, W.D. Should Australia lift its ban on low nitrosamine 576 smokeless tobacco products? Med. J. Aust. 2008, 188, 44–46. [Google Scholar]
  45. Phillips, C.V.; Rodu, B. Tobacco harm reduction: Opportunity and opposition. Drugs Alcohol Today 2013, 13, 73–78. [Google Scholar] [CrossRef]
  46. The Use of Nicotine Replacement Therapy to Reduce Harm in Smokers. Available online: htpp:// (accessed on 27 October 2014).
  47. Moore, D.; Aveyard, P.; Connock, M.; Wang, D.; Fry-Smith, A.; Barton, P. Effectiveness and safety of nicotine replacement therapy assisted reduction to stop smoking: Systematic review and meta-analysis. BMJ 2009, 338. [Google Scholar] [CrossRef] [PubMed]
  48. Farsalinos, K.E.; Romagna, G.; Tsiapras, D.; Kyrzopoulos, S.; Spyrou, A.; Voudris, V. Impact of flavour variability on electronic cigarette use experience: An internet survey. Int. J. Environ. Res. Public Health 2013, 10, 7272–7282. [Google Scholar] [CrossRef] [PubMed]
  49. Farsalinos, K.E.; Romagna, G.; Tsiapras, D.; Kyrzopoulos, S.; Voudris, V. Characteristics, perceived side effects and benefits of electronic cigarette use: A worldwide survey of more than 19,000 consumers. Int. J. Environ. Res. Public Health 2014, 11, 4356–4373. [Google Scholar] [CrossRef] [PubMed]
  50. Hajek, P.; Etter, J.-F.; Benowitz, B.; Eissenberg, T.; McRobbie, H. Electronic cigarettes: Review of use, content, safety, effects on smokers and potential for harm and benefit. Addiction 2014, 2014. [Google Scholar] [CrossRef]
  51. Ruyan®E-cigarette Bench-Top Tests. Available online: (accessed 20 November 2013).
  52. Evaluation of e-Cigarettes. Available online: (accessed on 10 November 2013).
  53. Hadwiger, M.; Trehy, M.; Ye, W.; Moore, T.; Allgire, J.; Westenberger, B. Identification of amino-tadalafil and rimonabant in electronic cigarette products using high pressure liquid chromatography with diode array and tandem mass spectrometric detection. J. Chromatogr. A. 2010, 1217, 7547–7555. [Google Scholar] [CrossRef] [PubMed]
  54. Cahn, Z.; Siegel, M. Electronic cigarettes as a harm reduction strategy for tobacco control: A step forward or a repeat of past mistakes? J. Public Health Policy 2011, 32, 16–31. [Google Scholar] [CrossRef]
  55. Pellegrino, R.M.; Tinghino, B.; Mangiaracina, G.; Marani, A.; Vitali, M.; Protano, C.; Osborn, J.F.; Cattaruzza, M.S. Electronic cigarettes: An evaluation of exposure to chemicals and fine Particulate Matter (PM). Ann. Ig. 2012, 24, 279–288. [Google Scholar] [PubMed]
  56. Kim, H.; Shin, H. Determination of tobacco-specific nitrosamines in replacement liquids of electronic cigarettes by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2013, 1291, 48–55. [Google Scholar] [CrossRef] [PubMed]
  57. Etter, J.; Zäther, E.; Svensson, S. Analysis of refill liquids for electronic cigarettes. Addiction 2013, 108, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
  58. Williams, M.; Villarreal, A.; Bozhilov, K.; Lin, S.; Talbot, P. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS One 2013, 8. [Google Scholar] [CrossRef] [PubMed]
  59. Burstyn, I. Peering through the mist: Systematic review of what the chemistry of contaminants in electronic cigarettes tells us about health risks. BMC Public Health 2014, 14. [Google Scholar] [CrossRef] [PubMed]

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license

Check Also

Successful smoking cessation with electronic cigarettes in smokers with a documented history of recurring relapses: a case series

Conclusion The most important message from this case series is that these smokers, with a …

Leave a Reply

Your email address will not be published. Required fields are marked *